Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Embedded Linux Development
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Embedded Linux Development

Mastering Embedded Linux Development

By : Frank Vasquez, Mr. Chris Simmonds
close
close
Mastering Embedded Linux Development

Mastering Embedded Linux Development

By: Frank Vasquez, Mr. Chris Simmonds

Overview of this book

Mastering Embedded Linux Development' is designed to be both a learning resource and a reference for your embedded Linux projects. The book starts by breaking down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. First, you will download and install a pre-built toolchain. After that, you will cross-compile each of the remaining three elements from scratch and learn to automate the process using Buildroot and the Yocto Project. The book progresses with coverage of over-the-air software updates and rapid prototyping with add-on boards. Two new chapters tackle modern development practices including Python packaging and deploying containerized applications. These are followed by a chapter on writing multithreaded code and another on techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in user space or in the Linux kernel itself. In addition to GDB, the book also covers the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this book, you will be able to create efficient and secure embedded devices with Linux that will delight your users.
Table of Contents (28 chapters)
close
close
1
Part 1: Elements of Embedded Linux
7
Part 2: Building Embedded Linux Images
11
Part 3: System Architecture and Design Decisions
18
Part 4: Developing Applications
23
Part 5: Debugging and Optimizing Performance

Virtual memory basics

To recap, Linux configures the Memory Management Unit (MMU) of the CPU to present a virtual address space to a running program that begins at zero and ends at the highest address, 0xffffffff, on a 32-bit processor. This address space is divided into pages of 4 KB by default. If 4 KB pages are too small for your application, then you can configure the kernel to use HugePages, reducing the amount of system resources needed to access page table entries and increasing the Translation Lookaside Buffer (TLB) hit ratio.

Linux divides this virtual address space into an area for applications, called user space, and an area for the kernel, called kernel space. The split between the two is set by a kernel configuration parameter named PAGE_OFFSET. In a typical 32-bit embedded system, PAGE_OFFSET is 0xc0000000, giving the lower 3 gigabytes to user space and the top gigabyte to kernel space. The user address space is allocated per process so that each process runs in...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY