Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Embedded Linux Development
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Embedded Linux Development

Mastering Embedded Linux Development

By : Frank Vasquez, Mr. Chris Simmonds
close
close
Mastering Embedded Linux Development

Mastering Embedded Linux Development

By: Frank Vasquez, Mr. Chris Simmonds

Overview of this book

Mastering Embedded Linux Development' is designed to be both a learning resource and a reference for your embedded Linux projects. The book starts by breaking down the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. First, you will download and install a pre-built toolchain. After that, you will cross-compile each of the remaining three elements from scratch and learn to automate the process using Buildroot and the Yocto Project. The book progresses with coverage of over-the-air software updates and rapid prototyping with add-on boards. Two new chapters tackle modern development practices including Python packaging and deploying containerized applications. These are followed by a chapter on writing multithreaded code and another on techniques to manage memory in an efficient way. The final chapters demonstrate how to debug your code, whether it resides in user space or in the Linux kernel itself. In addition to GDB, the book also covers the different tracers and profilers that are available for Linux so that you can quickly pinpoint any performance bottlenecks in your system. By the end of this book, you will be able to create efficient and secure embedded devices with Linux that will delight your users.
Table of Contents (28 chapters)
close
close
1
Part 1: Elements of Embedded Linux
7
Part 2: Building Embedded Linux Images
11
Part 3: System Architecture and Design Decisions
18
Part 4: Developing Applications
23
Part 5: Debugging and Optimizing Performance

ZeroMQ

Sockets, named pipes, and shared memory are the means by which inter-process communication takes place. They act as the transport layers for the message-passing process that makes up most non-trivial applications. Concurrency primitives such as mutexes and condition variables are used to manage shared access and coordinate work between threads running inside the same process. Multithreaded programming is notoriously difficult, and sockets and named pipes come with their own set of gotchas. A higher-level API is needed to abstract the complex details of asynchronous message passing. Enter ZeroMQ.

ZeroMQ is an asynchronous messaging library that acts like a concurrency framework. It has facilities for in-process, inter-process, TCP, and multicast transports, as well as bindings for various programming languages, including C, C++, Go, and Python. Those bindings, along with ZeroMQ’s socket-based abstractions, allow teams to easily mix programming languages within the...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY