Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Reinforcement Learning for Games
  • Toc
  • feedback
Hands-On Reinforcement Learning for Games

Hands-On Reinforcement Learning for Games

By : Micheal Lanham
5 (3)
close
Hands-On Reinforcement Learning for Games

Hands-On Reinforcement Learning for Games

5 (3)
By: Micheal Lanham

Overview of this book

With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.
Table of Contents (19 chapters)
close
1
Section 1: Exploring the Environment
7
Section 2: Exploiting the Knowledge
15
Section 3: Reward Yourself

Preface

This book is your one-stop shop for learning how various reinforcement learning (RL) techniques and algorithms play an important role in game development using Python.

The book will start with the basics to provide you with the necessary foundation to understand how RL is playing a major role in game development. Each chapter will help you implement various RL techniques, such as Markov decision processes, Q-learning, the actor-critic method, state-action-reward-state-action (SARSA), and the deterministic policy gradients algorithm, to build logical self-learning agents. You will use these techniques to enhance your game development skills and add various features to improve your overall productivity. Later in the book, you will learn how deep RL techniques can be used to devise strategies that enable agents to learn from their own actions so that you can build fun and engaging games.

By the end of the book, you will be able to use RL techniques to build various projects and contribute to open source applications.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete