Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Reinforcement Learning for Games
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Reinforcement Learning for Games

Hands-On Reinforcement Learning for Games

By : Micheal Lanham
5 (3)
close
close
Hands-On Reinforcement Learning for Games

Hands-On Reinforcement Learning for Games

5 (3)
By: Micheal Lanham

Overview of this book

With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.
Table of Contents (19 chapters)
close
close
1
Section 1: Exploring the Environment
7
Section 2: Exploiting the Knowledge
15
Section 3: Reward Yourself

Exercises

The following is a mix of simple and very difficult exercises. Choose those exercises that you feel appropriate to your interests, abilities, and resources. Some of the exercises in the following list could require considerable resources, so pick those that are within your time/resource budget:

  1. Tune the hyperparameters for sample Chapter_14_learn.py. This sample is a standard deep learning model, but the parameters should be familiar enough to figure out on your own.
  2. Tune the hyperparameters for sample Chapter_14_MetaSGD-VPG.py, as you normally would.
  3. Tune the hyperparameters for sample Chapter_14_Imagination.py. There are a few new hyperparameters in this sample that you should familiarize yourself with.
  4. Tune the hyperparameters for the Chapter_14_wo_HER.py and Chapter_14_HER.py examples. It can be very beneficial for your understanding to train the sample with and...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY