Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Build Your Own Programming Language
  • Toc
  • feedback
Build Your Own Programming Language

Build Your Own Programming Language

By : Clinton L. Jeffery
4.4 (17)
close
Build Your Own Programming Language

Build Your Own Programming Language

4.4 (17)
By: Clinton L. Jeffery

Overview of this book

The need for different types of computer languages is growing rapidly and developers prefer creating domain-specific languages for solving specific application domain problems. Building your own programming language has its advantages. It can be your antidote to the ever-increasing size and complexity of software. In this book, you’ll start with implementing the frontend of a compiler for your language, including a lexical analyzer and parser. The book covers a series of traversals of syntax trees, culminating with code generation for a bytecode virtual machine. Moving ahead, you’ll learn how domain-specific language features are often best represented by operators and functions that are built into the language, rather than library functions. We’ll conclude with how to implement garbage collection, including reference counting and mark-and-sweep garbage collection. Throughout the book, Dr. Jeffery weaves in his experience of building the Unicon programming language to give better context to the concepts where relevant examples are provided in both Unicon and Java so that you can follow the code of your choice of either a very high-level language with advanced features, or a mainstream language. By the end of this book, you’ll be able to build and deploy your own domain-specific languages, capable of compiling and running programs.
Table of Contents (25 chapters)
close
1
Section 1: Programming Language Frontends
7
Section 2: Syntax Tree Traversals
13
Section 3: Code Generation and Runtime Systems
21
Section 4: Appendix

Comparing bytecode assembler with binary formats

Bytecode machines tend to use simpler formats than native code, where binary object files are the norm. Some bytecode machines, such as Python, hide their bytecode format entirely or make it optional. Others, such as Unicon, use a human-readable assembler-like text format for compiled modules. In the case of Java, they seem to have gone out of their way to avoid providing an assembler, to make it more difficult for other languages to target their virtual machine (VM).

In the case of Jzero and its machine, we have strong incentives to keep things as simple as possible. The byc class defines two output methods: print() for text format and printb() for binary format. You can decide for yourself which one you prefer.

Printing bytecode in assembler format

The print() method in the byc class is similar to the one used in the tac class. One line of output is produced for each element in the list. The Unicon implementation of the print...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete