Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Embedded Programming with C++17
  • Toc
  • feedback
Hands-On Embedded Programming with C++17

Hands-On Embedded Programming with C++17

By : Maya Posch
2.5 (6)
close
Hands-On Embedded Programming with C++17

Hands-On Embedded Programming with C++17

2.5 (6)
By: Maya Posch

Overview of this book

C++ is a great choice for embedded development, most notably, because it does not add any bloat, extends maintainability, and offers many advantages over different programming languages. Hands-On Embedded Programming with C++17 will show you how C++ can be used to build robust and concurrent systems that leverage the available hardware resources. Starting with a primer on embedded programming and the latest features of C++17, the book takes you through various facets of good programming. You’ll learn how to use the concurrency, memory management, and functional programming features of C++ to build embedded systems. You will understand how to integrate your systems with external peripherals and efficient ways of working with drivers. This book will also guide you in testing and optimizing code for better performance and implementing useful design patterns. As an additional benefit, you will see how to work with Qt, the popular GUI library used for building embedded systems. By the end of the book, you will have gained the confidence to use C++ for embedded programming.
Table of Contents (17 chapters)
close
Free Chapter
1
Section 1: The Fundamentals - Embedded programming and the role of C++
7
Section 2: Testing, Monitoring
12
Section 3: Integration with other tools and frameworks

Working with the hardware

Each target platform has its own quirks and characteristics. Much of this is due to the development history of that platform. For a platform such as AVR, it's fairly coherent, as it was developed by a single company (Atmel) over many years, so it's fairly consistent between different chips and the tools that are used for the platform.

A platform such as ESP8266 (and to some extent its ESP32 successor) was never designed to be used as a generic MCU system, which shows in its rather sketchy and fragmented software ecosystem. Though things have gotten better over the past few years, with various frameworks and open source tools smoothing over the roughest spots, it's a platform where it's easy to make mistakes due to a lack of documentation, issues with tools, and a lack of on-chip debugging.

The ARM MCUs (Cortex-M) are being produced...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete