Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Data Analysis, Second Edition
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

By : Idris
4 (4)
close
close
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

4 (4)
By: Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (16 chapters)
close
close
13
A. Key Concepts
15
C. Online Resources

Autocorrelation plots


Autocorrelation plots graph autocorrelations of time series data for different time lags. In layman's terms, autocorrelation is the correlation of the values at time n and the values at time n+l, where l is the time lag. Generally, these plots are used for checking whether the time series has randomness in its progression. Autocorrelations are near zero for all time-lag separations in the case of a random time series, and have a non-zero value of significance at some or all time-lag separations for a non-random time series. We explain autocorrelation further in Chapter 7, Signal Processing and Time Series.

The autocorrelation_plot() Pandas function in pandas.tools.plotting can draw an autocorrelation plot. The following is the code from the ch-06.ipynb file in this book's code bundle:

import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
from pandas.tools.plotting import autocorrelation_plot 
 
df = pd.read_csv('transcount...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY