Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Data Analysis, Second Edition
  • Toc
  • feedback
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

By : Idris
4 (4)
close
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

4 (4)
By: Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (16 chapters)
close
13
A. Key Concepts
15
C. Online Resources

Three-dimensional plots


Two-dimensional plots are the bread and butter of data visualization. However, if you want to show off, nothing beats a good three-dimensional plot. I was once in charge of a software package that could draw contour plots and three-dimensional plots. The software could even draw plots that, when viewed with special glasses, would pop right in front of you.

The matplotlib API has the Axes3D class for three-dimensional plots. By demonstrating how this class works, we will also show how the object-oriented matplotlib API works. The matplotlib Figure class is a top-level container for chart elements:

  1. Create a figure object as follows:

            fig = plt.figure() 
    
  2. Create an Axes3D object from the figure object:

            ax = Axes3D(fig) 
    
  3. The years and CPU transistor counts will be our X and Y axes. It is necessary for us to create coordinate matrices from the years and CPU transistor counts arrays. Create the coordinate matrices with the NumPy meshgrid() function:

    ...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete