Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Data Analysis, Second Edition
  • Toc
  • feedback
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

By : Idris
4 (4)
close
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

4 (4)
By: Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (16 chapters)
close
13
A. Key Concepts
15
C. Online Resources

NumPy arrays

After going through the installation of NumPy, it's time to have a look at NumPy arrays. NumPy arrays are more efficient than Python lists when it comes to numerical operations. NumPy arrays are, in fact, specialized objects with extensive optimizations. NumPy code requires less explicit loops than equivalent Python code. This is based on vectorization.

If we go back to high school mathematics, then we should remember the concepts of scalars and vectors. The number 2, for instance, is a scalar. When we add 2 to 2, we are performing scalar addition. We can form a vector out of a group of scalars. In Python programming terms, we will then have a one-dimensional array. This concept can, of course, be extended to higher dimensions. Performing an operation on two arrays, such as addition, can be reduced to a group of scalar operations. In straight Python, we will do that with loops going through each element in the first array and adding it to the corresponding element in the second array. However, this is more verbose than the way it is done in mathematics. In mathematics, we treat the addition of two vectors as a single operation. That's the way NumPy arrays do it too, and there are certain optimizations using low-level C routines that make these basic operations more efficient. We will cover NumPy arrays in more detail in the Chapter 2, NumPy Arrays.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete