Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Data Analysis, Second Edition
  • Toc
  • feedback
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

By : Idris
4 (4)
close
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

4 (4)
By: Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (16 chapters)
close
13
A. Key Concepts
15
C. Online Resources

Visualizing data using Matplotlib

We shall learn about visualizing the data in a later chapter. For now, let's try loading two sample datasets and building a basic plot. First, install the sklearn library from which we shall load the data using the following command:

$ pip3 install scikit-learn 

Import the datasets using the following command:

from sklearn.datasets import load_iris 
from sklearn.datasets import load_boston 

Import the Matplotlib plotting module:

from matplotlib import pyplot as plt 
%matplotlib inline 

Load the iris dataset, print the description of the dataset, and plot column 1 (sepal length) as x and column 2 (sepal width) as y:

iris = load_iris() 
print(iris.DESCR) 
data=iris.data 
plt.plot(data[:,0],data[:,1],".") 

The resulting plot will look like the following image:

Visualizing data using Matplotlib

Load the boston dataset, print the description of the dataset and plot column 3 (proportion of non-retail business) as x and column 5 (nitric oxide concentration) as y, each point on the plot marked with a + sign:

boston = load_boston()
print(boston.DESCR)
data=boston.data
plt.plot(data[:,2],data[:,4],"+")

The resulting plot will look like the following image:

Visualizing data using Matplotlib

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete