Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Data Analysis, Second Edition
  • Toc
  • feedback
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

By : Idris
4 (4)
close
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

4 (4)
By: Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (16 chapters)
close
13
A. Key Concepts
15
C. Online Resources

Where to find help and references

The following table lists documentation websites for the Python data analysis libraries we discussed in this chapter.

Packages

Description

NumPy and SciPy

The main documentation website for NumPy and SciPy is at http://docs.scipy.org/doc/. Through this web page, you can browse NumPy and SciPy user guides and reference guides, as well as several tutorials.

Pandas

http://pandas.pydata.org/pandas-docs/stable/.

Matplotlib

http://matplotlib.org/contents.html.

IPython

http://ipython.readthedocs.io/en/stable/.

Jupyter Notebook

http://jupyter-notebook.readthedocs.io/en/latest/.

The popular Stack Overflow software development forum has hundreds of questions tagged NumPy, SciPy, Pandas, Matplotlib, IPython, and Jupyter Notebook. To view them, go to http://stackoverflow.com/questions/tagged/<your-tag-word-here>.

If you are really stuck with a problem, or you want to be kept informed of the development of these libraries, you can subscribe to their respective discussion mailing list(s). The number of e-mails per day varies from list to list. Developers actively involved with the development of these libraries answer some of the questions asked on the mailing lists.

For IRC users, there is an IRC channel on irc://irc.freenode.net. The channel is called #scipy, but you can also ask NumPy questions since SciPy users also have knowledge of NumPy, as SciPy is based on NumPy. There are at least 50 members on the SciPy channel at all times.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete