Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Data Analysis, Second Edition
  • Toc
  • feedback
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

By : Idris
4 (4)
close
Python Data Analysis, Second Edition

Python Data Analysis, Second Edition

4 (4)
By: Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (16 chapters)
close
13
A. Key Concepts
15
C. Online Resources

Legends and annotations


Legends and annotations are effective tools to display information required to comprehend a plot at a glance. A typical plot will have the following additional information elements:

  • A legend describing the various data series in the plot. This is provided by invoking the matplotlib legend() function and supplying the labels for each data series.

  • Annotations for important points in the plot. The matplotlib annotate() function can be used for this purpose. A matplotlib annotation consists of a label and an arrow. This function has many parameters describing both style and position of the label and arrow, so you may need to call help(annotate) for a detailed description.

  • Labels on the horizontal and vertical axes. These labels can be drawn by the xlabel() and ylabel() functions. We need to give these functions the text of the labels as a string, as well as optional parameters, such as the font size of the label.

  • A descriptive title for the graph with the matplotlib title...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete