Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learn Quantum Computing with Python and IBM Quantum
  • Toc
  • feedback
Learn Quantum Computing with Python and IBM Quantum

Learn Quantum Computing with Python and IBM Quantum

By : Robert Loredo
close
Learn Quantum Computing with Python and IBM Quantum

Learn Quantum Computing with Python and IBM Quantum

By: Robert Loredo

Overview of this book

IBM Quantum Lab is a platform that enables developers to learn the basics of quantum computing by allowing them to run experiments on a quantum computing simulator and on several real quantum computers. Updated with new examples and changes to the platform, this edition begins with an introduction to the IBM Quantum dashboard and Quantum Information Science Kit (Qiskit) SDK. You will become well versed with the IBM Quantum Composer interface as well as the IBM Quantum Lab. You will learn the differences between the various available quantum computers and simulators. Along the way, you’ll learn some of the fundamental principles regarding quantum mechanics, quantum circuits, qubits, and the gates that are used to perform operations on qubits. As you build on your knowledge, you’ll understand the functionality of IBM Quantum and the developer-focused resources it offers to address key concerns like noise and decoherence within a quantum system. You’ll learn how to monitor and optimize your quantum circuits. Lastly, you’ll look at the fundamental quantum algorithms and understand how they can be applied effectively. By the end of this quantum computing book, you'll know how to build quantum programs and will have gained a practical understanding of quantum computation that you can apply to your business.
Table of Contents (18 chapters)
close
14
Other Book You May Enjoy
15
Index

Understanding the noise effects of decoherence

We learned in Chapter 9, Simulating Quantum Systems and Noise Models, that we can generate various noise models that are based on the configuration of a specified quantum computer. After the configuration information is extracted, we can then apply any one of an array of error functions to a local simulator, which will reproduce similar error effects to what we would get from a quantum computer.

In this section, we will expand on that to learn how these errors affect our circuits over time. The two effects we will review here are the two most common issues found in near-term quantum systems: relaxation and dephasing. These are critical errors as they can affect the quantum state information, which would result in erroneous responses.

Later in this chapter, we will also look at readout errors, another common source of noise that originates when the system is applying a measurement pulse, while in parallel, listening in on the acquisition...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete