Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Reinforcement Learning Hands-On
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

By : Maxim Lapan
4.3 (38)
close
close
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

4.3 (38)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
close
close
26
Other Books You May Enjoy
27
Index

A2C on Pong

In the previous chapter, you saw a (not very successful) attempt to solve our favorite Pong environment with policy gradient methods. Let's try it again with the actor-critic method at hand.

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 128
NUM_ENVS = 50
REWARD_STEPS = 4
CLIP_GRAD = 0.1

We start, as usual, by defining hyperparameters (imports are omitted). These values are not tuned, as we will do this in the next section of this chapter. We have one new value here: CLIP_GRAD. This hyperparameter specifies the threshold for gradient clipping, which basically prevents our gradients from becoming too large at the optimization stage and pushing our policy too far. Clipping is implemented using the PyTorch functionality, but the idea is very simple: if the L2 norm of the gradient is larger than this hyperparameter, then the gradient vector is clipped to this value.

The REWARD_STEPS hyperparameter determines how many...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY