-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating

Deep Reinforcement Learning Hands-On
By :

All the chapters in this book describing RL methods have the same structure: in the beginning, we discuss the motivation of the method, its theoretical foundation, and the idea behind it. Then, we follow several examples of the method applied to different environments with the full source code.
You can use the book in different ways:
In any case, I hope the book will be useful for you!
You can download the example code files for this book from your account at www.packt.com/. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.
You can download the code files by following these steps:
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On-Second-Edition. In case there’s an update to the code, it will be updated on the existing GitHub repository.
We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!
We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781838826994_ColorImages.pdf.
There are a number of text conventions used throughout this book.
CodeInText
: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; “Mount the downloaded WebStorm-10*.dmg
disk image file as another disk in your system.”
A block of code is set as follows:
def grads_func(proc_name, net, device, train_queue):
envs = [make_env() for _ in range(NUM_ENVS)]
agent = ptan.agent.PolicyAgent(
lambda x: net(x)[0], device=device, apply_softmax=True)
exp_source = ptan.experience.ExperienceSourceFirstLast(
envs, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
batch = []
frame_idx = 0
writer = SummaryWriter(comment=proc_name)
Any command-line input or output is written as follows:
rl_book_samples/Chapter11$ ./02_a3c_grad.py --cuda -n final
Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: “Select System info from the Administration panel.”
Warnings or important notes appear like this.
Tips and tricks appear like this.