Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

6.6 Exercises

Ex. 1: Write a function that plots an ellipse given its center coordinates (x,y), the half axis a, and b rotation angle .

Ex. 2: Write a short program that takes a 2D array, for example, the preceding Mandelbrot contour image, and iteratively replace each value by the average of its neighbors. Update a contour plot of the array in a figure window to animate the evolution of the contours. Explain the behavior.

Ex. 3: Consider an  matrix or image with integer values. The mapping

is an example of a mapping of a toroidal square grid of points onto itself. This has the interesting property that it distorts the image by shearing and then moving the pieces outside the image back using the modulo function, mod. Applied iteratively, this results in randomizing the image in a way that eventually returns the original. Implement the following sequence,

,

and save out the first steps to files or plot them in a figure...