Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

5.5 Broadcasting

Broadcasting in NumPy denotes the ability to guess a common, compatible shape between two arrays. For instance, when adding a vector (one-dimensional array) and a scalar (zero-dimensional array), the scalar is extended to a vector, in order to allow for the addition. The general mechanism is called broadcasting. We will first review that mechanism from a mathematical point of view, and then proceed to give the precise rules for broadcasting in NumPy. The mathematical view might give a mathematically trained reader easier access to broadcasting, while other readers might want to skip the mathematical details and directly continue reading Section 5.5.2Broadcasting arrays.