Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

14.4 Shelves

Objects in dictionaries can be accessed by keys. There is a similar way to access particular data in a file by first assigning it a key. This is possible by using the module shelve:

from contextlib import closing
import shelve as sv
# opens a data file (creates it before if necessary)
with closing(sv.open('datafile')) as data:
    A = array([[1,2,3],[4,5,6]])     
    data['my_matrix'] = A  # here we created a key

In Section 14.1.1: Interacting with fileswe saw that the built-in command open generates a context manager, and we saw why this is important for handling external resources, such as files. In contrast to this command, sv.open does not create a context manager by itself. The command closing from the module contextlib is needed to transform it into an appropriate context manager.

Consider the following example of restoring the file:

from contextlib import closing
import shelve...