Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Scientific Computing with Python
  • Toc
  • feedback
Scientific Computing with Python

Scientific Computing with Python

By : Führer, Claus Fuhrer, Solem, Verdier
4.5 (15)
close
Scientific Computing with Python

Scientific Computing with Python

4.5 (15)
By: Führer, Claus Fuhrer, Solem, Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
close
20
About Packt
22
References

Infinite and not a number

There are, in total,  floating-point numbers. Sometimes, a numerical algorithm computes floating-point numbers outside this range.

This generates number overflow or underflow. In NumPy, the special floating-point number inf is assigned to overflow results:

exp(1000.) # inf 
a = inf
3 - a # -inf
3 + a # inf

Working with inf may lead to mathematically undefined results. This is indicated in Python by assigning the result another special floating-point number, nan. This stands for not-a-number, that is, an undefined result of a mathematical operation. To demonstrate this, we continue the previous example:

a + a # inf
a - a # nan
a / a # nan

There are special rules for operations with nan and inf. For instance, nan compared to anything (even to itself) always returns False:

x = nan 
x < 0 # False
x > 0 # False
x == x # False

See Exercise 4 for some surprising consequences of the fact that nan is never equal to itself.

The float inf behaves much more as expected:

0 < inf     # True 
inf <= inf # True
inf == inf # True
-inf < inf # True
inf - inf # nan
exp(-inf) # 0
exp(1 / inf) # 1

One way to check for nan and inf is to use the functions isnan and isinf. Often, you want to react directly when a variable gets the value nan or inf. This can be achieved by using the NumPy command seterr. The following command

seterr(all = 'raise')

would raise a FloatingPointError if a calculation were to return one of those values.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete