Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

2.2 Numeric types

At some point, you will have to work with numbers, so we start by considering different forms of numeric types in Python. In mathematics, we distinguish between natural numbers (ℕ), integers (ℤ), rational numbers (ℚ), real numbers (ℝ), and complex numbers (ℂ). These are infinite sets of numbers. Operations differ between these sets and may even not be defined. For example, the usual division of two numbers in ℤ might not result in an integer — it is not defined on ℤ.

In Python, like many other computer languages, we have numeric types:

  • The numeric type, int, which is at least theoretically the entire ℤ
  • The numeric type, float, which is a finite subset of ℝ
  • The numeric type, complex, which is a finite subset of ℂ

Finite sets have a smallest and a largest number and there is a minimum spacing between two numbers; see Section 2.2.2Floating-point numbersfor further details.