Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Bayesian Analysis with Python
  • Toc
  • feedback
Bayesian Analysis with Python

Bayesian Analysis with Python

By : Osvaldo Martin
3.2 (17)
close
Bayesian Analysis with Python

Bayesian Analysis with Python

3.2 (17)
By: Osvaldo Martin

Overview of this book

The second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models. The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others. By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.
Table of Contents (11 chapters)
close
9
Where To Go Next?

Diagnosing the samples

This section is focused on diagnostic samples for Metropolis and NUTS. Since we are approximating the posterior with a finite number of samples, is important to check whether we have a valid sample—otherwise any analysis from it will be totally flawed. There are several tests we can perform, some are visual and some are quantitative. These tests are designed to spot problems with our samples, but they are unable to prove we have the correct distribution; they can only provide evidence that the sample seems reasonable. If we find problems with the sample, the are many solutions to try:

  • Increase the number of samples.
  • Remove a number of samples from the beginning of the trace. This is known as burn-in. The PyMC3 tuning phase helps reduce the need for burn-in.
  • Modify sampler parameters, such as increasing the length of the tuning phase, or increase...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete