Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Bayesian Analysis with Python
  • Toc
  • feedback
Bayesian Analysis with Python

Bayesian Analysis with Python

By : Osvaldo Martin
3.2 (17)
close
Bayesian Analysis with Python

Bayesian Analysis with Python

3.2 (17)
By: Osvaldo Martin

Overview of this book

The second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models. The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others. By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.
Table of Contents (11 chapters)
close
9
Where To Go Next?

Exercises

  1. Using PyMC3, change the parameters of the prior beta distribution in our_first_model to match those of the previous chapter. Compare the results to the previous chapter. Replace the beta distribution with a uniform one in the interval [0,1]. Are the results equivalent to the ? Is the sampling slower, faster, or the same? What about using a larger interval such as [-1, 2]? Does the model run? What errors do you get?
  2. Read about the coal mining disaster model that is part of the PyMC3 documentation: http://pymc-devs.github.io/pymc3/notebooks/getting_started.html#Case-study-2:-Coal-mining-disasters. Try to implement and run this model by yourself.
  1. Modify model_g, change the prior for the mean to a Gaussian distribution centered at the empirical mean, and play with a couple of reasonable values for the standard deviation of this prior. How robust/sensitive are the inferences...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete