Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Bayesian Analysis with Python
  • Toc
  • feedback
Bayesian Analysis with Python

Bayesian Analysis with Python

By : Osvaldo Martin
3.2 (17)
close
Bayesian Analysis with Python

Bayesian Analysis with Python

3.2 (17)
By: Osvaldo Martin

Overview of this book

The second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models. The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others. By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.
Table of Contents (11 chapters)
close
9
Where To Go Next?

Modeling functions

We will begin our discussion of Gaussian processes by first describing a way to represent functions as probabilistic objects. We may think of a function, , as a mapping from a set of inputs, , to a set of outputs, . Thus, we can write:

One way to represent functions is by listing for each value its corresponding value. In fact, you may remember this way of representing functions from elementary school:

x y
0.00 0.46
0.33 2.60
0.67 5.90
1.00 7.91

As a general case, the values of and will live on the real line; thus, we can see a function as a (potentially) infinite and ordered list of paired (, ) values. The order is important because, if we shuffle the values, we will get different functions.

A function can also be represented as a (potentially) infinite array indexed by the values of , with the important distinction that the values of...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete