Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Bayesian Analysis with Python
  • Toc
  • feedback
Bayesian Analysis with Python

Bayesian Analysis with Python

By : Osvaldo Martin
3.2 (17)
close
Bayesian Analysis with Python

Bayesian Analysis with Python

3.2 (17)
By: Osvaldo Martin

Overview of this book

The second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models. The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others. By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.
Table of Contents (11 chapters)
close
9
Where To Go Next?

Markovian methods

There is a family of related methods, collectively known as MCMC methods. These stochastic methods allow us to get samples from the true posterior distribution as long as we are able to compute the likelihood and the prior point-wise. While this is the same condition that we need for the grid-approach, MCMC methods outperform the grid approximation. The is because MCMC methods are capable of taking more samples from higher-probability regions than lower ones. In fact, an MCMC method will visit each region of the parameter-space in accordance to their relative probabilities. If region A is twice as likely as region B, then we are going to get twice as many samples from A as from B. Hence, even if we are not capable of computing the whole posterior analytically, we could use MCMC methods to take samples from it.

At the most fundamental level, basically everything...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete