Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Bayesian Analysis with Python
  • Toc
  • feedback
Bayesian Analysis with Python

Bayesian Analysis with Python

By : Osvaldo Martin
3.2 (17)
close
Bayesian Analysis with Python

Bayesian Analysis with Python

3.2 (17)
By: Osvaldo Martin

Overview of this book

The second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models. The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others. By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.
Table of Contents (11 chapters)
close
9
Where To Go Next?

Linear models and non-linear data

In Chapter 3, Modeling with Linear Regression, and Chapter 4, Generalizing Linear Models, we learned to build models of the general form:

Here, is a parameter for some probability distribution (for example, the mean of a Gaussian), the parameter of a binomial, the rate of a Poisson distribution, and so on. We call the inverse link function and is a function that is the square root or a polynomial function. For the simple linear regression case, is the identity function.

Fitting (or learning) a Bayesian model can be seen as finding the posterior distribution of the weights , and thus, this is known as the weight-view of approximating functions. As we have already seen, with the polynomial regression example, by letting be a non-linear function, we can map the inputs onto a feature space. We then fit a linear relation in the feature space...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete