Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Bayesian Analysis with Python
  • Toc
  • feedback
Bayesian Analysis with Python

Bayesian Analysis with Python

By : Osvaldo Martin
3.2 (17)
close
Bayesian Analysis with Python

Bayesian Analysis with Python

3.2 (17)
By: Osvaldo Martin

Overview of this book

The second edition of Bayesian Analysis with Python is an introduction to the main concepts of applied Bayesian inference and its practical implementation in Python using PyMC3, a state-of-the-art probabilistic programming library, and ArviZ, a new library for exploratory analysis of Bayesian models. The main concepts of Bayesian statistics are covered using a practical and computational approach. Synthetic and real data sets are used to introduce several types of models, such as generalized linear models for regression and classification, mixture models, hierarchical models, and Gaussian processes, among others. By the end of the book, you will have a working knowledge of probabilistic modeling and you will be able to design and implement Bayesian models for your own data science problems. After reading the book you will be better prepared to delve into more advanced material or specialized statistical modeling if you need to.
Table of Contents (11 chapters)
close
9
Where To Go Next?

Programming Probabilistically

"Our golems rarely have a physical form, but they too are often made of clay living in silicon as computer code."
- Richard McElreath

Now that we have a basic understanding of Bayesian statistics, we are going to learn how to build probabilistic models using computational tools. Specifically, we are going to learn about probabilistic programming with PyMC3. The basic idea is to specify models using code and then solve them in a more or less automatic way. It is not that we are too lazy to learn the mathematical way, nor are we elitist-hardcore-hackers-in-code. One important reason behind this choice is that many models do not lead to an analytic closed form, and thus we can only solve those models using numerical techniques.

Another reason to learn probabilistic programming is that modern Bayesian statistics is mainly done by writing code...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete