Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Architecting AI Solutions on Salesforce
  • Table Of Contents Toc
  • Feedback & Rating feedback
Architecting AI Solutions on Salesforce

Architecting AI Solutions on Salesforce

By : Lars Malmqvist
4.8 (13)
close
close
Architecting AI Solutions on Salesforce

Architecting AI Solutions on Salesforce

4.8 (13)
By: Lars Malmqvist

Overview of this book

Written for Salesforce architects who want quickly implementable AI solutions for their business challenges, Architecting AI Solutions on Salesforce is a shortcut to understanding Salesforce Einstein’s full capabilities – and using them. To illustrate the full technical benefits of Salesforce’s own AI solutions and components, this book will take you through a case study of a fictional company beginning to adopt AI in its Salesforce ecosystem. As you progress, you'll learn how to configure and extend the out-of-the-box features on various Salesforce clouds, their pros, cons, and limitations. You'll also discover how to extend these features using on- and off-platform choices and how to make the best architectural choices when designing custom solutions. Later, you'll advance to integrating third-party AI services such as the Google Translation API, Microsoft Cognitive Services, and Amazon SageMaker on top of your existing solutions. This isn’t a beginners’ Salesforce book, but a comprehensive overview with practical examples that will also take you through key architectural decisions and trade-offs that may impact the design choices you make. By the end of this book, you'll be able to use Salesforce to design powerful tailor-made solutions for your customers with confidence.
Table of Contents (17 chapters)
close
close
1
Section 1: Salesforce and AI
3
Section 2: Out-of-the-Box AI Features for Salesforce
8
Section 3: Extending and Building AI Features
12
Section 4: Making the Right Decision

What this book covers

Chapter 1, AI Solutions on the Salesforce Einstein Platform, starts by clarifying why it is a good idea to build AI solutions on Salesforce and what business and technical benefits this approach can have. It will then present a bird's-eye view of the various components that will be discussed throughout the book, present a basic architectural view of Salesforce Einstein, and then continue with a discussion of how architecting AI solutions is different from architecting traditional solutions. The chapter ends by previewing the structure of the parts and chapters to come and giving a preview of the Pickled Plastics Ltd. scenario that will be expanded throughout.

Chapter 2, Salesforce AI for Sales, covers the core Sales-related AI options in Salesforce. It will go through Einstein Lead and Opportunity Scoring, Einstein Forecasting, Einstein Activity Capture, and Einstein Conversational Insights, and covers the main features and configuration options. For each topic, there will also be a discussion of the pros and cons and what options an architect has if the limits of the feature are reached. As part of each feature discussion, it will reference the scenario that is used throughout the book to give a real-world grounding.

Chapter 3, Salesforce AI for Service, covers the core Service-related AI options in Salesforce. It will go through Einstein Bots, Case Classification and Routing, Einstein Article Recommendations, and Einstein Reply Recommendations, and covers the main features and configuration options. For each topic, there will also be a discussion of the pros and cons and what options an architect has if the limits of the feature are reached.

Chapter 4, Salesforce AI for Marketing and Commerce, starts by going through the integration architecture between core Salesforce, Marketing, and Commerce clouds to show how one needs to think differently about architecting across multiple clouds. It will then focus on the features of first Marketing Cloud Einstein and then Commerce Cloud Einstein. These will be covered in slightly less depth than the Sales and Service features due to the large number of features to cover, but will still be covered in sufficient depth to make an architectural assessment of their potential inclusion in a solution.

Chapter 5, Salesforce AI for Industry Clouds, covers how Einstein has been brought into Salesforce's various industry clouds, including the Health, Financial Services, Manufacturing, Consumer Goods, Education, and Non-profit clouds. As most of these features have been created using other elements rather than being unique, this is more a showcase for how Einstein features can be used than a discussion of new technical material.

Chapter 6, Declarative Customization Options, shows how you can use generic Einstein declarative features to create your own solutions, as well as discussing when that can be the right approach. It will first show some of the many ways you can embed and configure Einstein Next Best Action, then walk the user through making a good prediction with Prediction Builder, and finish with creating a story using Einstein Discovery.

Chapter 7, Building AI Features with Einstein Platform Services, will take you through three examples of using the Einstein Platform Services APIs to create custom AI solutions for the platform. Along the way, it will also discuss the architectural choices and trade-offs involved. The examples will move from an image classifier to a form text recognizer to a sentiment analysis application, all integrated into a normal Salesforce Sales or Service workflow.

Chapter 8, Integrating Third-Party AI Services, takes you through three examples of custom development, in this case using external third-party services as part of normal Sales/Service workflows on Salesforce. For each example, the architectural setup and the relevant choices in relation thereto will be discussed. The first example will show automated translations with the Google Translation API, the second will extract information from documents attached to a Case, and the third will train a custom prediction model using Amazon SageMaker.

Chapter 9, A Salesforce AI Decision Guide, presents a summary of all the key architectural decisions and trade-offs that are relevant to the technologies discussed in the book. It will start by introducing the guide and how to use it, then move on to a discussion of common use cases for AI technologies. For each use case, it will make architectural suggestions based on the key dimensions of the particular use case. It will then do a similar thing, but focusing instead on common technical requirements and constraints that may impact the architectural choice to be made.

Chapter 10, Conclusion, summarizes the main points of the preceding section. First, it will remake the case for using out-of-the-box declarative features when this is possible and summarize the substantial architectural benefits of doing so. Then it will revisit the key considerations for going above and beyond these features and the ways this can be done. It will end by giving some hints for other resources that can be consulted should the reader wish to go further in various directions.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY