Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering Embedded Linux Programming
  • Toc
  • feedback
Mastering Embedded Linux Programming

Mastering Embedded Linux Programming

By : Chris Simmonds
4.8 (20)
close
Mastering Embedded Linux Programming

Mastering Embedded Linux Programming

4.8 (20)
By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (16 chapters)
close
15
Index

Preface

An embedded system is a device with a computer inside that doesn't look like a computer. Washing machines, televisions, printers, cars, aircraft, and robots are all controlled by a computer of some sort, and in some cases, more than one. As these devices become more complex, and as our expectations of the things that we can do with them expand, the need for a powerful operating system to control them grows. Increasingly, Linux is the operating system of choice.

The power of Linux stems from its open source model, which encourages sharing of code. This means that software engineers from many backgrounds, and often employed by competing companies, can cooperate to create an operating system kernel that is up-to-date and tracks the development of the hardware. From this one code base, there is support from the largest super computers down to a wristwatch. Linux is only one component of the operating system. Many other components are needed to create a working system, from basic tools, such as a command shell, to graphical user interfaces, with web content and communicating with cloud services. The Linux kernel together with an extensive range of other open source components allow you to build a system that can function in a wide range of roles.

However, flexibility is a double-edged sword. While it gives a system designer a wide choice of solutions to a particular problem, it also presents the problem of knowing which are the best choices. The propose of this book is to describe in detail how to construct an embedded Linux system using free, open source projects to produce a robust, reliable, and efficient system. It is based on the experience of the author as a consultant and trainer over a period of many years, using examples to illustrate best practices.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete