Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Embedded Linux Programming
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Embedded Linux Programming

Mastering Embedded Linux Programming

By : Chris Simmonds
4.8 (20)
close
close
Mastering Embedded Linux Programming

Mastering Embedded Linux Programming

4.8 (20)
By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (16 chapters)
close
close
15
Index

What is a toolchain?


A toolchain is the set of tools that compiles source code into executables that can run on your target device, and includes a compiler, a linker, and run-time libraries. Initially, you need one to build the other three elements of an embedded Linux system: the bootloader, the kernel, and the root filesystem. It has to be able to compile code written in assembly, C, and C++ since these are the languages used in the base open source packages.

Usually, toolchains for Linux are based on components from the GNU project (http://www.gnu.org) and that is still true in the majority of cases at the time of writing. However, over the past few years, the Clang compiler and the associated LLVM project (http://llvm.org) have progressed to the point that it is now a viable alternative to a GNU toolchain. One major distinction between LLVM and GNU-based toolchains is in the licensing; LLVM has a BSD license, while GNU has the GPL. There are some technical advantages to Clang as well...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY