Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering Embedded Linux Programming
  • Toc
  • feedback
Mastering Embedded Linux Programming

Mastering Embedded Linux Programming

By : Chris Simmonds
4.8 (20)
close
Mastering Embedded Linux Programming

Mastering Embedded Linux Programming

4.8 (20)
By: Chris Simmonds

Overview of this book

Mastering Embedded Linux Programming takes you through the product cycle and gives you an in-depth description of the components and options that are available at each stage. You will begin by learning about toolchains, bootloaders, the Linux kernel, and how to configure a root filesystem to create a basic working device. You will then learn how to use the two most commonly used build systems, Buildroot and Yocto, to speed up and simplify the development process. Building on this solid base, the next section considers how to make best use of raw NAND/NOR flash memory and managed flash eMMC chips, including mechanisms for increasing the lifetime of the devices and to perform reliable in-field updates. Next, you need to consider what techniques are best suited to writing applications for your device. We will then see how functions are split between processes and the usage of POSIX threads, which have a big impact on the responsiveness and performance of the final device The closing sections look at the techniques available to developers for profiling and tracing applications and kernel code using perf and ftrace.
Table of Contents (16 chapters)
close
15
Index

Device drivers in user-space


Before you start writing a device driver, pause for a moment to consider whether it is really necessary. There are generic device drivers for many common types of device that allow you to interact with hardware directly from user space without having to write a line of kernel code. User space code is certainly easier to write and debug. It is also not covered by the GPL, although I don't feel that is a good reason in itself to do it this way.

They fall into two broad categories: those that you control through files in sysfs, including GPIO and LEDs, and serial buses that expose a generic interface through a device node, such as I2C.

GPIO

General Purpose Input/Output (GPIO) is the simplest form of digital interface since it gives you direct access to individual hardware pins, each of which can be configured as input or output. GPIO can even be used to create higher level interfaces such as I2C or SPI by manipulating each bit in the software, a technique that is called...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete