Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Unlocking Data with Generative AI and RAG
  • Toc
  • feedback
Unlocking Data with Generative AI and RAG

Unlocking Data with Generative AI and RAG

By : Keith Bourne
5 (2)
close
Unlocking Data with Generative AI and RAG

Unlocking Data with Generative AI and RAG

5 (2)
By: Keith Bourne

Overview of this book

Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes. The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies. By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique.
Table of Contents (20 chapters)
close
Free Chapter
1
Part 1 – Introduction to Retrieval-Augmented Generation (RAG)
7
Part 2 – Components of RAG
14
Part 3 – Implementing Advanced RAG

To get the most out of this book

Readers should have a basic understanding of Python programming and familiarity with machine learning concepts. Knowledge of natural language processing (NLP) and LLMs would be beneficial. Experience with data processing and database management is also helpful. This book assumes readers have some experience with AI development environments, are comfortable working with APIs, and have experience working in a Jupyter notebook environment.

Software/hardware covered in the book

Operating system requirements

Python 3.x

Windows, macOS, or Linux

LangChain

Windows, macOS, or Linux

OpenAI API

Windows, macOS, or Linux

Jupyter notebooks

Windows, macOS, or Linux

You will need access to a Python development environment that supports Jupyter notebooks. An OpenAI API key is required for many of the examples. Some chapters may require additional API keys for services such as Tavily or Together AI, but you will be walked through setting those up in those chapters. A machine with at least 8 GB of RAM is recommended for running the more complex examples, especially those involving LLMs.

If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete