Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Unlocking Data with Generative AI and RAG
  • Table Of Contents Toc
  • Feedback & Rating feedback
Unlocking Data with Generative AI and RAG

Unlocking Data with Generative AI and RAG

By : Keith Bourne
5 (2)
close
close
Unlocking Data with Generative AI and RAG

Unlocking Data with Generative AI and RAG

5 (2)
By: Keith Bourne

Overview of this book

Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes. The book explores RAG’s role in enhancing organizational operations by blending theoretical foundations with practical techniques. You’ll work with detailed coding examples using tools such as LangChain and Chroma’s vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG’s diverse use cases, from search engines to chatbots. You’ll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies. By the end of this book, you’ll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what’s possible with this revolutionary AI technique.
Table of Contents (20 chapters)
close
close
Free Chapter
1
Part 1 – Introduction to Retrieval-Augmented Generation (RAG)
7
Part 2 – Components of RAG
14
Part 3 – Implementing Advanced RAG

Advanced RAG-Related Techniques for Improving Results

In this final chapter, we explore several advanced techniques to improve retrieval-augmented generation (RAG) applications. These techniques go beyond the fundamental RAG approaches to tackle more complex challenges and achieve even better results. Our starting point will be techniques we have already used in previous chapters. We will build off those techniques, learning where they fall short so that we can introduce new techniques that can make up the difference and take your RAG efforts even further.

Throughout this chapter, you will gain hands-on experience implementing these advanced techniques through a series of code labs. Our topics will include the following:

  • Naïve RAG and its limitations
  • Hybrid RAG/multi-vector RAG for improved retrieval
  • Re-ranking in hybrid RAG
  • Code lab 14.1 – Query expansion
  • Code lab 14.2 – Query decomposition
  • Code lab 14.3 – Multi-modal RAG (MM...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY