Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying 10 Machine Learning Blueprints You Should Know for Cybersecurity
  • Table Of Contents Toc
  • Feedback & Rating feedback
10 Machine Learning Blueprints You Should Know for Cybersecurity

10 Machine Learning Blueprints You Should Know for Cybersecurity

By : Rajvardhan Oak
4.7 (3)
close
close
10 Machine Learning Blueprints You Should Know for Cybersecurity

10 Machine Learning Blueprints You Should Know for Cybersecurity

4.7 (3)
By: Rajvardhan Oak

Overview of this book

Machine learning in security is harder than other domains because of the changing nature and abilities of adversaries, high stakes, and a lack of ground-truth data. This book will prepare machine learning practitioners to effectively handle tasks in the challenging yet exciting cybersecurity space. The book begins by helping you understand how advanced ML algorithms work and shows you practical examples of how they can be applied to security-specific problems with Python – by using open source datasets or instructing you to create your own. In one exercise, you’ll also use GPT 3.5, the secret sauce behind ChatGPT, to generate an artificial dataset of fabricated news. Later, you’ll find out how to apply the expert knowledge and human-in-the-loop decision-making that is necessary in the cybersecurity space. This book is designed to address the lack of proper resources available for individuals interested in transitioning into a data scientist role in cybersecurity. It concludes with case studies, interview questions, and blueprints for four projects that you can use to enhance your portfolio. By the end of this book, you’ll be able to apply machine learning algorithms to detect malware, fake news, deep fakes, and more, along with implementing privacy-preserving machine learning techniques such as differentially private ML.
Table of Contents (15 chapters)
close
close

Summary

In this chapter, we learned about a privacy preservation mechanism for ML known as federated learning. In traditional ML, all data is aggregated and processed in a central location, but in FML, the data remains distributed across multiple devices or locations, and the model is trained in a decentralized manner. In FML, we share the model and not the data.

We discussed the core concepts and working of FML, followed by an implementation in Python. We also benchmarked the performance of federated learning against traditional ML approaches to examine the privacy-utility trade-off. This chapter provided an introduction to an important aspect of ML and one that is gaining rapid traction in today’s privacy-centric technology world.

In the next chapter, we will go a step further and look at the hottest topic in ML privacy today – differential privacy.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY