Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with Amazon SageMaker Cookbook
  • Toc
  • feedback
Machine Learning with Amazon SageMaker Cookbook

Machine Learning with Amazon SageMaker Cookbook

By : Joshua Arvin Lat
5 (9)
close
Machine Learning with Amazon SageMaker Cookbook

Machine Learning with Amazon SageMaker Cookbook

5 (9)
By: Joshua Arvin Lat

Overview of this book

Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems. This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams. By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems.
Table of Contents (11 chapters)
close

Generating a synthetic dataset for text classification problems

In this recipe, we will generate a synthetic dataset for a binary text classification problem. The dataset to be generated in this recipe has two primary fields: the text field containing a statement in string format and the target label that specifies whether the text is POSITIVE or NEGATIVE.

Figure 8.2 – Synthetic dataset for text classification problems

In Figure 8.2, we can see that the sentences with the POSITIVE tag have the __label__positive label while the sentences with the NEGATIVE tag have the __label__negative label. We will use this dataset to train and deploy a BlazingText model in the next recipes to solve a sentiment analysis requirement.

Getting ready

A SageMaker Studio notebook running the Python 3 (Data Science) kernel is the only prerequisite for this recipe.

How to do it…

The first steps in this recipe focus on generating a list of POSITIVE and NEGATIVE...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete