Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning with Amazon SageMaker Cookbook
  • Toc
  • feedback
Machine Learning with Amazon SageMaker Cookbook

Machine Learning with Amazon SageMaker Cookbook

By : Joshua Arvin Lat
5 (9)
close
Machine Learning with Amazon SageMaker Cookbook

Machine Learning with Amazon SageMaker Cookbook

5 (9)
By: Joshua Arvin Lat

Overview of this book

Amazon SageMaker is a fully managed machine learning (ML) service that helps data scientists and ML practitioners manage ML experiments. In this book, you'll use the different capabilities and features of Amazon SageMaker to solve relevant data science and ML problems. This step-by-step guide features 80 proven recipes designed to give you the hands-on machine learning experience needed to contribute to real-world experiments and projects. You'll cover the algorithms and techniques that are commonly used when training and deploying NLP, time series forecasting, and computer vision models to solve ML problems. You'll explore various solutions for working with deep learning libraries and frameworks such as TensorFlow, PyTorch, and Hugging Face Transformers in Amazon SageMaker. You'll also learn how to use SageMaker Clarify, SageMaker Model Monitor, SageMaker Debugger, and SageMaker Experiments to debug, manage, and monitor multiple ML experiments and deployments. Moreover, you'll have a better understanding of how SageMaker Feature Store, Autopilot, and Pipelines can meet the specific needs of data science teams. By the end of this book, you'll be able to combine the different solutions you've learned as building blocks to solve real-world ML problems.
Table of Contents (11 chapters)
close

Technical requirements

You will need the following to complete the recipes in this chapter:

  • A running Amazon SageMaker notebook instance (for example, ml.t2.large). Feel free to use the SageMaker notebook instance we launched in the Launching an Amazon SageMaker Notebook instance recipe of Chapter 1, Getting Started with Machine Learning Using Amazon SageMaker.
  • Permission to manage the Amazon SageMaker, Amazon S3, and AWS Cloud9 resources if you're using an AWS IAM user with a custom URL. It is recommended to be signed in as an AWS IAM user instead of using the root account in most cases. For more information, feel free to take a look at https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html.

The Jupyter Notebooks, source code, and CSV files used for each chapter are available in this book's GitHub repository: https://github.com/PacktPublishing/Machine-Learning-with-Amazon-SageMaker-Cookbook/tree/master/Chapter02.

Check out the following link to see the relevant Code in Action video:

https://bit.ly/38Uvemc

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete