Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Q-Learning with Python
  • Toc
  • feedback
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

By : Nazia Habib
2.3 (3)
close
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

2.3 (3)
By: Nazia Habib

Overview of this book

Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you become familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into model-free Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in scientific research. Toward the end, you’ll gain insight into what’s in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow.
Table of Contents (14 chapters)
close
Free Chapter
1
Section 1: Q-Learning: A Roadmap
6
Section 2: Building and Optimizing Q-Learning Agents
9
Section 3: Advanced Q-Learning Challenges with Keras, TensorFlow, and OpenAI Gym

Model-tuning and tracking your agent's long-term performance

As we build and tune our models, we need to test their performance and make sure they are improving with respect to speed and accuracy. In general, a model that performs better as it is fed more data is a model that is fitted well to its training environment. Let's test the performance of our baseline agent against our learning model and observe what happens when we run the model over more iterations.

Comparing your models and statistical performance measures

Let's go back to our randomly-acting baseline agent. We've changed the variable name, count, to epochs to distinguish each training time step from each full game loop cycle the agent completes...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete