Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Q-Learning with Python
  • Toc
  • feedback
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

By : Nazia Habib
2.3 (3)
close
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

2.3 (3)
By: Nazia Habib

Overview of this book

Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you become familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into model-free Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in scientific research. Toward the end, you’ll gain insight into what’s in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow.
Table of Contents (14 chapters)
close
Free Chapter
1
Section 1: Q-Learning: A Roadmap
6
Section 2: Building and Optimizing Q-Learning Agents
9
Section 3: Advanced Q-Learning Challenges with Keras, TensorFlow, and OpenAI Gym

Chapter 5, Building Q-Networks with TensorFlow

  1. An extensional definition is given in terms of examples. An intensional definition is a dictionary definition, given in terms of a high-level description.
  2. Feedforward is the process by which values of individual nodes in a network are calculated, and the values are then multiplied by network weights and used as inputs to other nodes in the next layer of the network.
  3. The weights in a neural network are used to calculate values to be propagated through the network. They function as coefficients and are updated through backpropagation to improve the accuracy of the network.
  1. Gradient descent is an optimization function that adjusts its parameters iteratively to minimize error. It is used in backpropagation to adjust the weights on a neural network to correctly approximate the desired function.
  2. Backpropagation is used to train neural...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete