Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Q-Learning with Python
  • Toc
  • feedback
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

By : Nazia Habib
2.3 (3)
close
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

2.3 (3)
By: Nazia Habib

Overview of this book

Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you become familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into model-free Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in scientific research. Toward the end, you’ll gain insight into what’s in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow.
Table of Contents (14 chapters)
close
Free Chapter
1
Section 1: Q-Learning: A Roadmap
6
Section 2: Building and Optimizing Q-Learning Agents
9
Section 3: Advanced Q-Learning Challenges with Keras, TensorFlow, and OpenAI Gym

Chapter 3, Setting Up Your First Environment with OpenAI Gym

  1. You can do this by cloning the source instead of installing the package from pip. Further instructions are available in the Gym documentation.
  2. The term state is commonly used in the terminology of solving Markov decision processes, and the term observation is often used when describing RL environment state spaces. Both terms are equivalent in this context.
  3. Calling env.reset() resets the environment's state and returns the environment's current observation or state variable.
  4. The task will end when the done variable is set to True or the reward is set to 20, depending on your implementation. Both conditions indicate that the task has been solved.
  5. Setting env.s will manually change the state of the environment. This is bad practice when implementing an RL strategy; the state should not be set manually when solving...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete