Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Q-Learning with Python
  • Toc
  • feedback
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

By : Nazia Habib
2.3 (3)
close
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python

2.3 (3)
By: Nazia Habib

Overview of this book

Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you become familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into model-free Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in scientific research. Toward the end, you’ll gain insight into what’s in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow.
Table of Contents (14 chapters)
close
Free Chapter
1
Section 1: Q-Learning: A Roadmap
6
Section 2: Building and Optimizing Q-Learning Agents
9
Section 3: Advanced Q-Learning Challenges with Keras, TensorFlow, and OpenAI Gym

Thompson sampling and the Bayesian control rule

We'll go over the concepts of Thompson sampling and Bayesian control problems at a high level, but they are well worth exploring further as an extension of the topics covered in this book.

Thompson sampling

Essentially, Thompson sampling has us believing what the prior probability distribution is and updating it every time we get new information about the environment. Eventually, our updated belief will coincide with the true probability distribution. This approach is fundamentally Bayesian. This is because it treats the probability distribution as our current lack of knowledge about the environment and updates it according to the new information we get.

In Thompson sampling...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete