Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Reinforcement Learning with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

By : Sudharsan Ravichandiran
2.6 (18)
close
close
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

2.6 (18)
By: Sudharsan Ravichandiran

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.
Table of Contents (16 chapters)
close
close

Deep diving into ANN

We know that in artificial neurons, we multiply the input by weights, add bias to them and apply an activation function to produce the output. Now, we will see how this happens in a neural network setting where neurons are arranged in layers. The number of layers in a network is equal to the number of hidden layers plus the number of output layers. We don't take the input layer into account. Consider a two-layer neural network with one input layer, one hidden layer, and one output layer, as shown in the following diagram:

Let's say we have two inputs, x1 and x2, and we have to predict the output y. Since we have two inputs, the number of neurons in the input layer will be two. Now, these inputs will be multiplied by weights and then we add bias and propagate the resultant value to the hidden layer where the activation function will be applied. So...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY