Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Reinforcement Learning with Python
  • Toc
  • feedback
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

By : Sudharsan Ravichandiran
2.6 (18)
close
Hands-On Reinforcement Learning with Python

Hands-On Reinforcement Learning with Python

2.6 (18)
By: Sudharsan Ravichandiran

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.
Table of Contents (16 chapters)
close

Monte Carlo prediction

In DP, we solve the Markov Decision Process (MDP) by using value iteration and policy iteration. Both of these techniques require transition and reward probabilities to find the optimal policy. But how can we solve MDP when we don't know the transition and reward probabilities? In that case, we use the Monte Carlo method. The Monte Carlo method requires only sample sequences of states, actions, and rewards. the Monte Carlo methods are applied only to the episodic tasks. Since Monte Carlo doesn't require any model, it is called the model-free learning algorithm.

The basic idea of the Monte Carlo method is very simple. Do you recall how we defined the optimal value function and how we derived the optimal policy in the previous chapter, Chapter 3, Markov Decision Process and Dynamic Programming?

A value function is basically the expected return from...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete