Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Reinforcement Learning Hands-On
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

By : Maxim Lapan
4.3 (34)
close
close
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

4.3 (34)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
Table of Contents (21 chapters)
close
close
20
Index

To get the most out of this book

All chapters in the book describing RL methods have the same structure: in the beginning we discuss the motivation of the method, its theoretical foundation, and intuition behind it. Then, we follow several examples of the method applied to different environment with full source code. So, you can use the book in different ways:

  1. To quickly become familiar with some method of methods you can read only introductory part of the relevant chapter or chapter's section.
  2. To get deeper understanding of the way method is implemented you can read the code and the comments around.
  3. To gain deep familiarity with the method (the best way to learn, I believe) you should try to reimplement the method and make it working, using provided source code as a reference point.

In any case, I hope the book will be useful for you!

Download the example code files

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at http://www.packtpub.com.
  2. Select the SUPPORT tab.
  3. Click on Code Downloads & Errata.
  4. Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR / 7-Zip for Windows
  • Zipeg / iZip / UnRarX for Mac
  • 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://www.packtpub.com/sites/default/files/downloads/DeepReinforcementLearningHandsOn_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example; "The method get_observation() is supposed to return to the agent the current environment's observation."

A block of code is set as follows:

    def get_actions(self):
        return [0, 1]

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

    def get_actions(self):
        return [0, 1]

Any command-line input or output is written as follows:

$ xvfb-run -s "-screen 0 640x480x24" python 04_cartpole_random_monitor.py

Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example: "In practice it's some piece of code, which implements some policy."

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY