Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Reinforcement Learning Hands-On
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

By : Maxim Lapan
4.3 (34)
close
close
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

4.3 (34)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
Table of Contents (21 chapters)
close
close
20
Index

The Bellman equation of optimality


To explain the Bellman equation, it's better to go a bit abstract. Don't be afraid, I'll provide the concrete examples later to support your intuition! Let's start with a deterministic case, when all our actions have a 100% guaranteed outcome. Imagine that our agent observes state and has N available actions. Every action leads to another state, , with a respective reward, . Also assume that we know the values, , of all states connected to the state . What will be the best course of action that the agent can take in such a state?

Figure 3: An abstract environment with N states reachable from the initial state

If we choose the concrete action , and calculate the value given to this action, then the value will be . So, to choose the best possible action, the agent needs to calculate the resulting values for every action and choose the maximum possible outcome. In other words: . If we're using discount factor , we need to multiply the value of the next state...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY