Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Reinforcement Learning Hands-On
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

By : Maxim Lapan
4.3 (34)
close
close
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

4.3 (34)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
Table of Contents (21 chapters)
close
close
20
Index

ES on CartPole

The complete example is in Chapter16/01_cartpole_es.py. In this example, we use the single environment to check the fitness of the perturbed network weights. Our fitness function will be the undiscounted total reward for the episode:

#!/usr/bin/env python3
import gym
import time
import numpy as np

import torch
import torch.nn as nn

from tensorboardX import SummaryWriter

From the import statements, you can notice how self-contained our example is. We're not using PyTorch optimizers, as we do not perform backpropagation at all. In fact, we could avoid using PyTorch completely and work only with NumPy, as the only thing we use PyTorch for is to perform a forward pass and calculate the network's output.

MAX_BATCH_EPISODES = 100
MAX_BATCH_STEPS = 10000
NOISE_STD = 0.01
LEARNING_RATE = 0.001

The amount of hyperparameters is also small and includes the following values:

  • MAX_BATCH_EPISODES and MAX_BATCH_STEPS: The limit of episodes and steps we use for training
  • NOISE_STD: The...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY