Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Reinforcement Learning Hands-On
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

By : Maxim Lapan
4.3 (34)
close
close
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

4.3 (34)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on 'grid world' environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots.
Table of Contents (21 chapters)
close
close
20
Index

Training code

We have two very similar training modules in this example: one for the feed-forward model and one for 1D convolutions. For both of them, there is nothing new added to our examples from Chapter 7, DQN Extensions:

  • They’re using epsilon-greedy action selection to perform exploration. The epsilon linearly decays over the first 1M steps from 1.0 to 0.1.
  • A simple experience replay buffer of size 100k is being used, which is initially populated with 10k transitions.
  • For every 1000 steps, we calculate the mean value for the fixed set of states to check the dynamics of the Q-values during the training.
  • For every 100k steps, we perform validation: 100 episodes are played on the training data and on previously unseen quotes. Characteristics of orders are recorded in TensorBoard, such as the mean profit, the mean count of bars, and share held. This step allows us to check for overfitting conditions.

The training modules are in Chapter08/train_model.py (feed-forward model)...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY