Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Scala for Machine Learning, Second Edition
  • Toc
  • feedback
Scala for Machine Learning, Second Edition

Scala for Machine Learning, Second Edition

By : R. Nicolas
4.5 (2)
close
Scala for Machine Learning, Second Edition

Scala for Machine Learning, Second Edition

4.5 (2)
By: R. Nicolas

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (21 chapters)
close
20
Index

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning. Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Finally, the environment variables JAVA_HOME, PATH, and CLASSPATH have to be updated accordingly."

A block of code is set as follows:

[default]
val lsp = builder.model(lrJacobian)
.weight(wMatrix)
.target(labels)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

[default]
val lsp = builder. model(lrJacobian)
.weight(wMatrix)
.target(labels)

The source code block is described using a reference number embedded as a code comment:

[default]
val lsp = builder. model(lrJacobian) //1
.weight(wMatrix)
.target(labels)

The reference number is used in the chapter as follows: "The model instance is initialized with the Jacobian matrix, lrJacobian (line 1)".

Any command-line input or output is written as follows:

sbt/sbt assembly

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "The loss function is then known as the hinge loss."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete