Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Scala for Machine Learning, Second Edition
  • Toc
  • feedback
Scala for Machine Learning, Second Edition

Scala for Machine Learning, Second Edition

By : R. Nicolas
4.5 (2)
close
Scala for Machine Learning, Second Edition

Scala for Machine Learning, Second Edition

4.5 (2)
By: R. Nicolas

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (21 chapters)
close
20
Index

Markov decision processes


This first section also describes the basic concepts you need to know to understand, develop, and apply the hidden Markov model, starting with the Markov property.

The Markov property

The Markov property is a characteristic of a stochastic process where the conditional probability distribution of a future state depends on the current state and not on its past states. In this case, the transition between the states occurs at a discrete time, and the Markov property is known as the discrete Markov chain.

The first-order discrete Markov chain

The following example is taken from Introduction to Machine Learning by E. Alpaydin [7:3].

Let's consider the following use case. N balls of different colors are hidden in N boxes (one each). The balls can have only three colors {Blue, Red, and Green}. The experimenter draws the balls one by one. The state of the discovery process is defined by the color of the latest ball drawn from one of the boxes: S0 = Blue, S1 = Red, and S2...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete