Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Scala for Machine Learning, Second Edition
  • Toc
  • feedback
Scala for Machine Learning, Second Edition

Scala for Machine Learning, Second Edition

By : R. Nicolas
4.5 (2)
close
Scala for Machine Learning, Second Edition

Scala for Machine Learning, Second Edition

4.5 (2)
By: R. Nicolas

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (21 chapters)
close
20
Index

Chapter 4. Unsupervised Learning

Labeling a set of observations for classification or regression can be a daunting task, especially in the case of a large features set. In some cases, labeled observations are either unavailable or not possible to create. In an attempt to extract some hidden associations or structures from observations, the data scientist relies on unsupervised learning techniques to detect patterns or similarity in data.

The goal of unsupervised learning is to discover patterns of regularities and irregularities in a set of observations. These techniques are also applied in reducing the solution or features space.

There are numerous unsupervised algorithms; some are more appropriate to handle dependent features, while others generate affinity groups in the case of hidden features [4:1]. In this chapter, you will learn three of the most common unsupervised learning algorithms:

  • K-means: Clustering observed features
  • Expectation-Maximization (EM): Clustering observed...
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete