Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering Predictive Analytics with R, Second Edition
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering Predictive Analytics with R, Second Edition

Mastering Predictive Analytics with R, Second Edition

By : James D. Miller , Rui Miguel Forte
5 (1)
close
close
Mastering Predictive Analytics with R, Second Edition

Mastering Predictive Analytics with R, Second Edition

5 (1)
By: James D. Miller , Rui Miguel Forte

Overview of this book

R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R.
Table of Contents (16 chapters)
close
close
8
8. Dimensionality Reduction
15
Index

Summary


In this chapter, we learned how to build decision trees for regression and classification tasks. We saw that, although the idea is simple, there are several decisions that we have to make in order to construct our tree model, such as what splitting criterion to use, as well as when and how to prune our final tree.

In each case, we considered a number of viable options and it turns out that there are several algorithms that are used to build decision tree models. Some of the best qualities of decision trees are the fact that they are typically easy to implement and very easy to interpret, while making no assumptions about the underlying model of the data. Decision trees have native options for performing feature selection and handling missing data, and are very capable of handling a wide range of feature types.

Having said that, we saw that, from a computational perspective, finding a split for categorical variables is quite expensive due to the exponential growth of the number of possible...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY