Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering Predictive Analytics with R, Second Edition
  • Toc
  • feedback
Mastering Predictive Analytics with R, Second Edition

Mastering Predictive Analytics with R, Second Edition

By : James D. Miller , Rui Miguel Forte
5 (1)
close
Mastering Predictive Analytics with R, Second Edition

Mastering Predictive Analytics with R, Second Edition

5 (1)
By: James D. Miller , Rui Miguel Forte

Overview of this book

R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R.
Table of Contents (16 chapters)
close
8
8. Dimensionality Reduction
15
Index

Maximal margin classification


We'll begin this chapter by returning to a situation that should be very familiar by now: the binary classification task. Once again, we'll be thinking about the problem of how to design a model that will correctly predict whether an observation belongs to one of two possible classes. We've already seen that this task is simplest when the two classes are linearly separable; that is, when we can find a separating hyperplane (a plane in a multidimensional space) in the space of our features so that all the observations on one side of the hyperplane belong to one class and all the observations that lie on the other side belong to the second class. Depending on the structure, assumptions, and optimizing criterion that our particular model uses, we could end up with one of infinite such hyperplanes.

Let's visualize this scenario using some data in a two-dimensional feature space, where the separating hyperplane is just a separating line:

In the preceding diagram, we...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete